

Duke Energy Carolinas 2020 Resource Adequacy Study CONFIDENTIAL APPENDIX (REDACTED)

9/1/2020

PREPARED FOR

Duke Energy

PREPARED BY

Kevin Carden Nick Wintermantel Cole Benson Astrapé Consulting

Confidential Appendix – DEC 2020 Resource Adequacy Study

Table CA1. DEC Import Capability including TRM

Total

DEC	Total Summer Capability (MW)	Total Winter Capability (MW)
DEC	(14144)	(14144)
SC to DEC		
SCEG to DEC		
SOCO to DEC		
TVA to DEC		
PJM West to DEC		
Yadkin to DEC		
CPLE to DEC		
CPLW to DEC		

DEC 2020 Resource Adequacy Study

CONFIDENTIAL APPENDIX (REDACTED VERSION)

Table CA2. DEC Purchase Contract Modeling

Unit Name	Summer Capacity (MW)	Winter Capacity (MW)
NUG Poultry, Swine, Non-Hydro, Wholesale Non-Hydro	7	7
NUG Hydro	3	3
	1	1
	8	8
	4	4
	2	2
	0.6	0.6
	12	12
	7	7

Table CA3. Fuel Prices

Fuel Type	2024 Average Delivered Price			
Uranium		\$/MMBtu		
Delivered Coal		\$/MMBtu		
Delivered Natural Gas		\$/MMBtu		
Delivered Oil		\$/MMBtu		

Table CA4. System EFOR¹

Unit Name	Resource Type	Annual EFOR	Summer EFOR	Winter EFOR
Allen 1	Coal			
Allen 2	Coal			
Allen 3	Coal			
Allen 4	Coal			
Allen 5	Coal			
Belews Creek 1	Coal			
Belews Creek 2	Coal			
Cliffside 5	Coal			
Cliffside 6	Coal			
Marshall 1	Coal			
Marshall 2	Coal			
Marshall 3	Coal			
Marshall 4	Coal			
Catawba 1	Nuclear			
Catawba 2	Nuclear			
McGuire 1	Nuclear			
McGuire 2	Nuclear			
Oconee 1	Nuclear			
Oconee 2	Nuclear			
Oconee 3	Nuclear			
Buck CC	Combined Cycle			
Dan River CC	Combined Cycle			
Lee CC	Combined Cycle			
Lee NG Conversion	Natural Gas			
Lincoln CT_1	Natural Gas Peaker			
Lincoln CT_2	Natural Gas Peaker			
Lincoln CT_3	Natural Gas Peaker			
Lincoln CT_4	Natural Gas Peaker			

¹ If a unit did not have forced outage events in one of the 4 seasons (summer, winter, spring, fall) during the historical period, then the events of one season were duplicated for other seasons which explains why the annual, summer, and winter EFOR are identical for some units. CT EFOR values were capped at 15% because generators that only operated a few hours have high historical EFOR values that are not representative of future operation during years with significant high load periods. However, if the CT EFORs were not capped, the system weighted EFOR would increase to 5.5% causing an increase in 1.5% in reserve margin results. The annual EFORs were scaled to 15% so seasonable values may be lower or higher than the 15%.

DEC 2020 Resource Adequacy Study

CONFIDENTIAL APPENDIX (REDACTED VERSION)

Lincoln CT_5	Natural Gas Peaker		
Lincoln CT_6	Natural Gas Peaker		
Lincoln CT_7	Natural Gas Peaker		
Lincoln CT_8	Natural Gas Peaker		
Lincoln CT_9	Natural Gas Peaker		
Lincoln CT_10	Natural Gas Peaker		
Lincoln CT_11	Natural Gas Peaker		
Lincoln CT_12	Natural Gas Peaker		
Lincoln CT_13	Natural Gas Peaker		
Lincoln CT_14	Natural Gas Peaker		
Lincoln CT_15	Natural Gas Peaker		
Lincoln CT_16	Natural Gas Peaker		
Lee CT_1	Oil Peaker		
Lee CT_2	Oil Peaker		
Mill_Creek_CT_1	Natural Gas Peaker		
Mill_Creek_CT_2	Natural Gas Peaker		
Mill_Creek_CT_3	Natural Gas Peaker		
Mill_Creek_CT_4	Natural Gas Peaker		
Mill_Creek_CT_5	Natural Gas Peaker		
Mill_Creek_CT_6	Natural Gas Peaker		
Mill_Creek_CT_7	Natural Gas Peaker		
Mill_Creek_CT_8	Natural Gas Peaker		
Rockingham CT_1	Natural Gas Peaker		
Rockingham CT_2	Natural Gas Peaker		
Rockingham CT_3	Natural Gas Peaker		
Rockingham CT_4	Natural Gas Peaker		
Rockingham CT_5	Natural Gas Peaker		
Jocassee_1	Pump Storage Hydro		
Jocassee_2	Pump Storage Hydro		
Jocassee_3	Pump Storage Hydro		
Jocassee_4	Pump Storage Hydro		
Bad Creek_1	Pump Storage Hydro		
Bad Creek_2	Pump Storage Hydro		
Bad Creek_3	Pump Storage Hydro		
Bad Creek_4	Pump Storage Hydro		

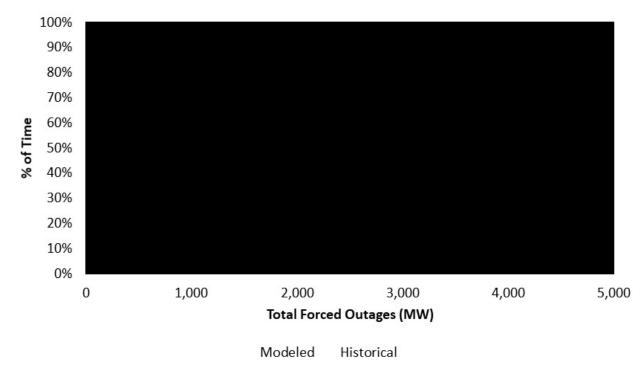


Figure CA1. Resources on Unplanned Outage as a Percentage of Time

The total MWs offline produced by the model calibrated very closely to the 2014 – 2019 historical values. Figure CA1 demonstrates that in any given hour, the DEC system can have between 0 and MW of its thermal resources offline due to forced outages, forced derates, and maintenance outages. The figure further shows that in 10% of all hours, DEC has greater than MW of its thermal resources in an unplanned outage condition.

Figure CA2. 2014-2019 Outage Summary Chart (Combined DEC and DEP)

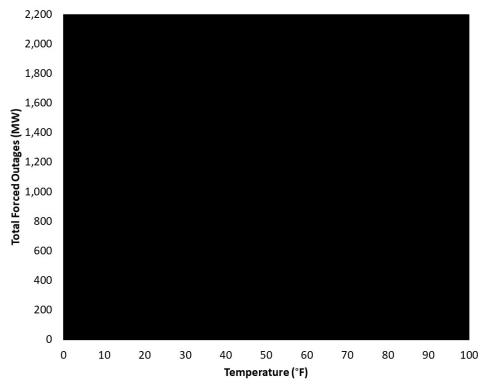
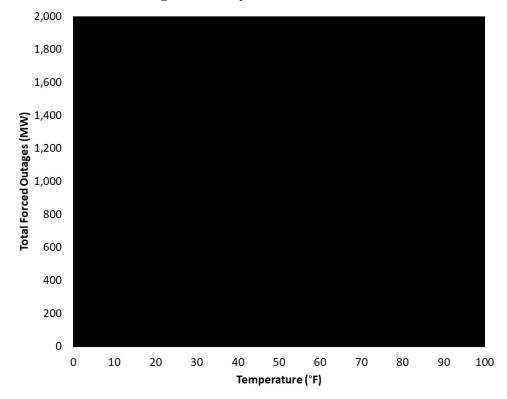
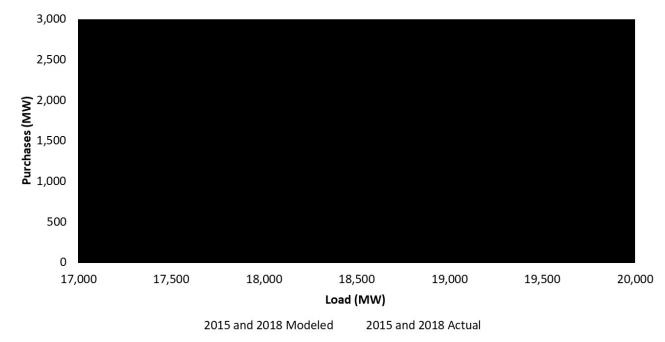



Figure CA3. 2016-2019 Outage Summary Chart (Combined DEC and DEP)


DEC 2020 Resource Adequacy Study

CONFIDENTIAL APPENDIX (REDACTED VERSION)

Table CA5. MWs of Outage on 10 Coldest Days Only Due to Cold Weather (Combined DEC and DEP) $\,$

	MWs of Outage Due to Cold Weather									
Hour	1/7/2014	2/20/2015	1/8/2015	1/24/2014	1/2/2018	1/6/2014	1/9/2017	1/8/2017	1/8/2014	1/1/2018
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
Min Temp (°F)	6	8	9	10	10	12	15	16	16	17

Figure CA4. 2015 & 2018 Historical and Modeled Purchases

Table CA6. Economic Carrying Cost (based on Summer Rating)

Study Year	ECC Capacity Costs (\$/kW-yr)	FOM (\$/kW-yr)	ECC plus FOM (\$/kW-yr)
2024			